Comparative analysis of an evaporative condenser using artificial neural network and adaptive neuro-fuzzy inference system
نویسندگان
چکیده
This study deals with predicting the performance of an evaporative condenser using both artificial neural network (ANN) and adaptive neuro-fuzzy inference system (ANFIS) techniques. For this aim, an experimental evaporative condenser consisting of a copper tube condensing coil along with air and water circuit elements was developed and equipped with instruments used for temperature, pressure and flow rate measurements. After the condenser was connected to an R134a vapour-compression refrigeration circuit, it was operated at steady state conditions, while varying both dry and wet bulb temperatures of the air stream entering the condenser, air and water flow rates as well as pressure, temperature and flow rate of the entering refrigerant. Using some of the experimental data for training, ANN and ANFIS models for the evaporative condenser were developed. These models were used for predicting the condenser heat rejection rate, refrigerant temperature leaving the condenser along with dry and wet bulb temperatures of the leaving air stream. Although it was observed that both ANN and ANFIS models yielded a good statistical prediction performance in terms of correlation coefficient, mean relative error, root mean square error and absolute fraction of variance, the accuracies of ANFIS predictions were usually slightly better than those of ANN predictions. This study reveals that, having an extended prediction capability compared to ANN, the ANFIS technique can also be used for predicting the performance of evaporative condensers. a 2008 Elsevier Ltd and IIR. All rights reserved. Analyse comparative d’un condenseur évaporatif en employant un réseau neuronal artificiel et de systèmes neuronaux et logique floue par inférence Mots clés : Système frigorifique ; Condenseur évaporatif ; Expérimentation ; Performance ; Modélisation ; Logique floue ; Réseau neuronal 291; fax: þ 90 262 3033003. Metin Ertunc). er Ltd and IIR. All rights reserved.
منابع مشابه
The use of wavelet - artificial neural network and adaptive neuro fuzzy inference system models to predict monthly precipitation
Precipitation forecasting due to its random nature in space and time always faced with many problems and this uncertainty reduces the validity of the forecasting model. Nowadays nonlinear networks as intelligent systems to predict such complex phenomena are widely used. One of the methods that have been considered in recent years in the fields of hydrology is use of wavelet transform as a moder...
متن کاملA COMPREHENSIVE STUDY ON THE CONCRETE COMPRESSIVE STRENGTH ESTIMATION USING ARTIFICIAL NEURAL NETWORK AND ADAPTIVE NEURO-FUZZY INFERENCE SYSTEM
This research deals with the development and comparison of two data-driven models, i.e., Artificial Neural Network (ANN) and Adaptive Neuro-based Fuzzy Inference System (ANFIS) models for estimation of 28-day compressive strength of concrete for 160 different mix designs. These various mix designs are constructed based on seven different parameters, i.e., 3/4 mm sand, 3/8 mm sand, cement conten...
متن کاملPrediction of Methyl Salicylate Effects on Pomegranate Fruit Quality and Chilling Injuries using Adaptive Neuro-Fuzzy Inference System and Artificial Neural Network
Adaptive neuro-fuzzy inference system (ANFIS) and genetic algorithm–artificial neural network (GA-ANN) were investigated for predicting methyl salicylate (MeSA) effects on chilling injuries and quality changes of pomegranate fruits during storage. Fruits were treated with MeSA at three concentrations(0, 0.01 and 0.1 mM) and stored under chilling temperature for 84 days. ANFIS and GA-ANN models ...
متن کاملEvaluation of the Efficiency of the Adaptive Neuro Fuzzy Inference System (ANFIS) in the Modeling of the Ionosphere Total Electron Content Time Series Case Study: Tehran Permanent GPS Station
Global positioning system (GPS) measurements provide accurate and continuous 3-dimensional position, velocity and time data anywhere on or above the surface of the earth, anytime, and in all weather conditions. However, the predominant ranging error source for GPS signals is an ionospheric error. The ionosphere is the region of the atmosphere from about 60 km to more than 1500 km above the eart...
متن کاملPrediction of Thermal performance nanofluid Al2O3 by Artificial Neural Network and Adaptive Neuro-Fuzzy Inference Systemt
In recent years, the use of modeling methods that directly utilize empirical data is increasing due to the high accuracy in predicting the results of the process, rather than statistical methods. In this paper, the ability of Artificial Neural Network (ANN) and Adaptive Fuzzy-Neural Inference System (ANFIS) models in the prediction of the thermal performance of Al2O3 nanofluid that is measured ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008